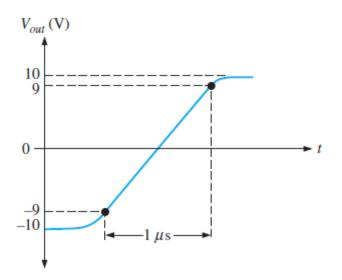
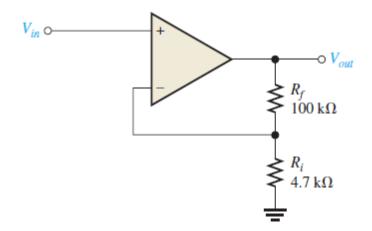
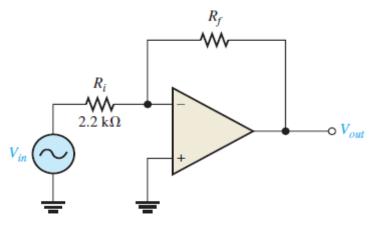
Faculty of engineering at shoubra Communication department ECE-322: Electronic Circuits (B)

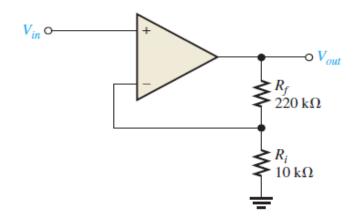


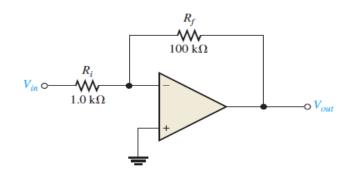
Dr. Ahmad El-Banna Semester : Spring 2017


Sheet:2

Operational Amplifiers


- 1. A certain op-amp has an open-loop differential voltage gain of 100,000 and a common-mode gain of 0.2. Determine the CMRR and express it in decibels.
- 2. The output voltage of a certain op-amp appears as shown in Figure in response to a step input. Determine the slew rate.


3. Determine the closed-loop voltage gain of the amplifier in Figure


4. Given the op-amp configuration in Figure, determine the value of $R_{\rm f}$ required to produce a closed-loop voltage gain of -100.

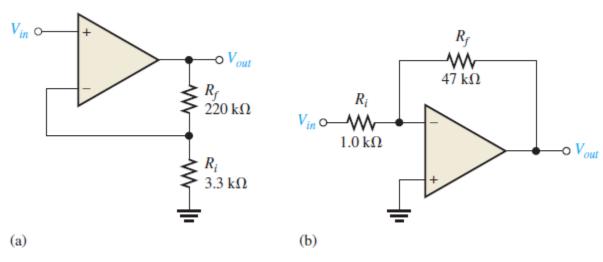
- 5. Design an operational amplifier circuit with gain equals:
- a)12 b) -12
- 6. Determine the input and output impedances of the amplifier in Figure The op-amp datasheet gives $Z_{in} = 2M\Omega$, $Z_{out} = 75\Omega$, and $A_{ol} = 200,000$. and then Find the closed-loop voltage gain.

- 7. The op-amp in problem 6 is used in a voltage-follower configuration. Determine the input and output impedances.
- 8. Find the values of the input and output impedances in Figure. Also, determine the closed-loop voltage gain. The op-amp has the following parameters: $A_{ol} = 50,000$; $Z_{in} = 4M\Omega$; and $Z_{out} = 50\Omega$.

9. Design an operational amplifier circuit with the following specifications:

(Two stages ,Total gain =30 dB, $Z_i = 100 K\Omega$, $Z_o = 1\Omega$) The op-amp has the following parameters: $A_{ol} = 50,000$ and $Z_{out} = 5 K\Omega$.

10. A certain op-amp has three internal amplifier stages with the following gains and critical frequencies:


Stage 1: A_{v1} = 40 dB, f_{c1} = 2 kHz

Stage 2: A_{v2} = 32 dB, f_{c2} =40 kHz

Stage 3: A_{v3} = 20 dB, f_{c3} =150 kHz

Determine the open-loop midrange gain in decibels and the total phase lag when $f = f_{c1}$.

- 11. A certain amplifier has an open-loop midrange gain of 150,000 and an open-loop 3 dB bandwidth of 200 Hz. The attenuation (B) of the feedback loop is 0.002. What is the closed-loop bandwidth?
- 12. Determine the bandwidth of each of the amplifiers in Figure. Both op-amps have an open-loop gain of 100 dB and a unity-gain bandwidth (f_T) of 3 MHz.

